

WEBB – The game changer in astronomy

Nora Lützgendorf

CESAR Meeting

24/05/2022

ESA UNCLASSIFIED – For ESA Official Use Only

The SPACE TELESCOPE

Why James Webb?

• James Edwin Webb (October 7, 1906 – March 27, 1992)

▶ 2nd NASA Administrator 1961 - 1968

Major driving force behind Apollo Program

WEBB IN A NUTSHELL

Overview of Webb and ESA's contributions to the mission.

ESA provides a team of astronomers and engineers to support science operations

Webb will reach space on an **Ariane 5** from **Europe's Spaceport** in French Guiana, a launch contributed by ESA

Webb is the **largest** and most **powerful** space telescope ever launched

Webb's partners

Webb observes
near-infrared to
mid-infrared
light

Webb studies our own
Solar System and
exoplanets around
other stars

Webb studies the birth of the **first stars** and **galaxies**

The James Webb Space Telescope - Early Stages

This is how the future begins: scribbles on a napkin

P. Bèly, GSFC, 1996

Nora Lützgendorf | 24/05/2022 | CESAR Meeting | Slide 5

The James Webb Space Telescope - Early Stages Secondary Mirror Spacecraft Support Module Primary Mirror Sunshield Integrated Science Instrument Module (ISIM) Nora Lützgendorf | 24/05/2022 | CESAR Meeting | Slide 6

The James Webb Space Telescope - Today

COMPARING WEBB AND HUBBLE

Webb follows the NASA/ESA Hubble Space Telescope in the line of great space observatories. Both space observatories have different capabilities and will operate in parallel, complementing each other.

1.5 million km

Second Sun-Earth Lagrange point

WEBB

Primary mirror
6.5 m

18
mirror
segments

13.5 billion years ago

WEBB MISSION MILESTONES

The following list gives the main Webb mission milestones anticipated in the coming year. Dates are approximate and more information will be provided via ESA's website (esa.int) and social media channels (@ESA_Webb) once details are confirmed.

HOW TO FOLLOW

- ESA Web TV: esawebtv.esa.int
- Information for general public: esa.int/webb
 In-depth information: sci.esa.int/jwst
- **f** EuropeanSpaceAgency
- @europeanspaceagency
- You Tube esa

@esa
@ESA_Webb
@esascience
@ariane5

Hashtags: #Webb #UnfoldTheUniverse #WebbSeesFarther #WebbFliesAriane

#WorldWideWebb #WebbAtHome

LAUNCH TIMELINE AT EUROPE'S SPACEPORT

LAUNCH ASSEMBLY AND INTEGRATION EN ROUTE TO L2 -55 days -29 days -7 days -6 days -1 day Launch +3 min +27 min +30 min +2 min +9 min From Europe's Ariane 5 Booster Fairing Main stage Webb arriving Webb placed on Webb encapsulated Spacecraft ESA tracks Main stage Spaceport rolls out to separation at Pariacabo positioned on Ariane 5 in the fairing separation separation separation Webb in early

launch pad

in French Guiana

harbour

launch table

Europe's Spaceport in French Guiana

orbit phase

WEBB'S JOURNEY TO L2

Webb will orbit the second Lagrange point (L2), 1.5 million kilometres from Earth in the direction away from the Sun. At L2, Webb can always block light and heat from both the Sun and Earth with

WEBB AND ARIANE 5: A FIT MADE PERFECT

ESA is flying Webb on an Ariane 5 rocket, which has been customised for this extraordinary telescope.

size of a tennis court

Folded Webb

Height 10.66 m Width

4.5 m

Height 17 m

Diameter 5.4 m

28 venting ports allow depressurisation

during launch sequence

Oscillating

rolling manoeuvre to protect Webb from solar radiation after fairing separation

WHAT IS INFRARED?

What is infrared?

WHY STUDY THE UNIVERSE IN INFRARED?

9

Near-infrared light reveals the formation of galaxies, and peers through the dust layers that enshroud new born stars

Mid-infrared light peers through the cold dusty regions where stars form, and reveals how massive stars and black holes shape their surroundings

Galaxy evolution

First stars and galaxies

Dark ages

Big bang

Present

12 billion years

13.6 billion years

13.8 billion years

WEBB SCIENCE

Webb is designed to answer outstanding questions about the Universe and to make breakthrough discoveries in all fields of astronomy.

Four major research areas of JWST

Imaging and spectroscopic exploration probing our universe

First light and reionization

Assembly of Galaxies

Giant Elliptical Galaxy

GALAXIES

Galaxies interact with each other. They even merge.

Giant

Galaxies looked very different in the past. Very clumpy and irregular.

Nora Lützgendorf | 24/05/2022 | CESAR Meeting | Slide 21

FORMATION OF STARS AND PLANETS

Mid-infrared light peers through the cold dusty regions where stars form.

4. Formation of planetary system.

3. Clumps in proto planets.

@esa

PLANETS AND THE ORIGING OF LIFE

PLANETS

Spectra detectives

Scientists study spectra to analyse what atoms and molecules are present in the source. Spectra also reveal the temperature, density and motion of the objects

Nora Lützgendorf | 24/05/2022 | CESAR Meeting | Slide 23

WEBB'S SCIENCE INSTRUMENTS

THE NEAR-INFRARED SPECTROGRAPH (NIRSPEC)

NIRSpec was built for ESA by a consortium of European industrial companies led by Airbus Defence & Space, with contributions from NASA

Micro Shutters

Observation Modes

WEBB UNFOLDING SEQUENCE

Webb is so big that it has to fold origami-style to fit in the Ariane 5 rocket and it will unfold like a 'transformer' in space. This graphic shows a few key steps of the unfolding sequence, which is a complex process that Webb will go through in its month-long journey to L2.

Lateral deployment of the sunshield

Deployment of the two structures protecting the folded sunshield

Tensioning and separation of the five sunshield insulation layers

L+1 month

Webb telescope unfolded

Unfolding of the secondary mirror support structure

Deployment of the two primary mirror lateral wings

Mirror Alignement

Nora Lützgendorf | 24/05/2022 | CESAR Meeting | Slide 33

WEBB TELESCOPE IMAGE SHARPNESS CHECK

esa

COMMISSIONING

For the last 6 months...

... I was home at the MOC (Mission Operation Center)!

Summary

- 6.5m mirror, 18 segments
- Sunshield size of tennis court
- 1.5 million km from earth
- Near and Mid-infrared instruments
- Launch: Dec 25 2021

SCIENCE

- 1. First Light and Reionisation
- 2. Assembly of Galaxies
- 3. Birth of Stars and Protoplanetary Systems
- 4. Planets and Origin of Life
- ➡ Everything else not imagined yet...

COMMISSIONING

- L+20d: Deployment
- L+30d: Arrival to L2
- L+124d: Mirrors
 Adjusted
- L+180d: Commissioning end, first images!

Critical Phases are already done! We are almost ready.

Nora Lützgendorf | 24/05/2022 | CESAR Meeting | Slide 38